
EECS 440 System Design of a Search Engine
Winter 2019

Lecture 9: Threads, locks and
producer/consumer relationships

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda

1. Course details.
2. Processes.
3. Virtual memory.
4. Threads.
5. Locks.
6. Producer-consumer relationships.
7. Multi-reader/single writer locks.

2

Agenda

1. Course details.
2. Processes.
3. Virtual memory.
4. Threads.
5. Locks.
6. Producer-consumer relationships.
7. Multi-reader/single writer locks.

3

details
1. HtmlParser AG fixed. All submissions have been

rerun.
2. LinuxGetUrl and LinuxGetSsl now due Feb 28.
3. String/vector, one per team, due Mar 7.
4. More shuffling of due dates still possible.
5. Hope to read your bios and your plans this

weekend. Apologies for being slow.

4

Reading list

Please read the first 3
main articles by Dennis
Ritchie and Ken
Thompson.

5

http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf

Image source: https://en.wikipedia.org/wiki/Dennis_Ritchie#/media/File:Ken_Thompson_and_Dennis_Ritchie.jpg

http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
https://en.wikipedia.org/wiki/Dennis_Ritchie#/media/File:Ken_Thompson_and_Dennis_Ritchie.jpg

6

The first one is especially
helpful.
Here’s a better PDF.
I may test you on it.

https://people.eecs.berkeley.edu/~brewer/cs262/unix.pdf

https://people.eecs.berkeley.edu/%7Ebrewer/cs262/unix.pdf

Agenda

1. Course details.
2. Processes.
3. Virtual memory.
4. Threads.
5. Locks.
6. Producer-consumer relationships.
7. Multi-reader/single writer locks.

7

8

The Process Model
1. Each process is protected from other processes.
2. Owns resources:

a. Memory (instructions, stack, data)
b. Open handles to files, pipes, semaphores,

etc.
3. Can also share resources, e.g., blocks of memory.
4. Has “state” information:

a. Current directory
b. Environment variables
c. One or more threads of execution

5. One-way inheritance to children.

Process creation

1. When you type a command into a Unix shell, it creates a
child process to run that command.

2. The child process is traditionally created by a fork() + exec().

3. fork() creates an exact duplicate of the calling process and
returns 0 to the child and the process id of the child to the
parent.

4. exec() overlays the current process with a new executable
image, but retaining any open handles.

9

Unix process creation
System uses a sequence of two calls to start a process:
1. fork() creates a copy of current process.
2. exec(program, args) replaces current address space with

specified program.

10

11

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

fork() creates a new process by duplicating the calling process. The new
process is referred to as the child process. The calling process is referred to
as the parent process.

The child process and the parent process run in separate memory spaces.
At the time of fork() both memory spaces have the same content.

12

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

The child process is an exact duplicate of the parent process except for the
following points:

1. The child has its own unique process ID.

2. The child's parent process ID is the same as the parent's process ID.

3. The child does not inherit its parent's memory locks, timers, pending
signals and outstanding asynchronous I/O.

13

#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ..., NULL */);
int execlp(const char *file, const char *arg, ...

/* (char *) NULL */);
int execle(const char *path, const char *arg, ...

/*, (char *) NULL, char * const envp[] */);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[],

char *const envp[]);

The exec() family of functions replaces the current process image with a new process
image.

The initial argument for these functions is the name of a file that is to be executed.

14

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

The waitpid() function suspends execution of the calling thread until child
process terminates then returns information about its exit status.

15

$ g++ LinuxForkExec.cpp -o LinuxForkExec
$./LinuxForkExec wc LinuxForkExec.cpp
parent waiting for child
child starting wc
38 117 861 LinuxForkExec.cpp
child has exited with status = 0
$

#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
#include <iostream>
using namespace std;

int main(int argc, char **argv)
{
if (--argc == 0)

{
cerr << "Usage: LinuxForkExec command arguments" << endl;
return 1;
}

pid_t processId = fork();
if (processId)

{
// parent process
cout << "parent waiting for child" << endl;
int waitStatus;
waitpid(processId, &waitStatus, 0);
cout << "child has exited with status = " << WEXITSTATUS(waitStatus)

<< endl;
}

else
{
// child process
argv++;
cout << "child starting " << *argv << endl;
execvp(*argv, argv);
cout << "this never prints" << endl;
}

}

Unix process creation

Why first copy the process only to overwrite it?
Allows sharing of code, file descriptors, other state information and results in
a simple interface.
Windows by contrast, uses a single CreateProcess() system call, but
requires a very complex set of arguments to deal with all the possible cases.

17

18

BOOL CreateProcessA(
LPCSTR lpApplicationName,
LPSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCSTR lpCurrentDirectory,
LPSTARTUPINFOA lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation

);

BOOL CreateProcessW(
LPCWSTR lpApplicationName,
LPWSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCWSTR lpCurrentDirectory,
LPSTARTUPINFOW lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation

);

There is no fork().

Creates the child running a new
executable, returns a handle to the
child.

argv is passed as a string, not an
array.

Child process retrieves the
command line with
GetCommandLine(). C runtime
turns that into argc, argv.

Slightly complex rules for words
containing spaces or quotes.

Lots of options for debugging, etc.

Two versions.

Windows CreateProcess

Unix process creation

Why first copy the process only to overwrite it?
Even if it makes for a simpler application programming interface (API), isn’t it
still expensive and wasteful?
No, because the operating system uses a virtual memory technique called
copy-on-write.

19

Agenda

1. Course details.
2. Processes.
3. Virtual memory.
4. Threads.
5. Locks.
6. Producer-consumer relationships.
7. Multi-reader/single writer locks.

20

Address Spaces

• Hardware interface:
– All processes share physical memory

• OS abstraction:

21

bound Process A

0

bound Process B

0

bound Process C

0

Dynamic address translation

Address independence

Virtual addresses are scoped to 1 process.

Protection

One process can’t refer to another’s address space.

Virtual memory

VA only needs to be in physical memory when accessed.

Allows changing translations on the fly.

22

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Dynamic address translation

23

Many ways to implement the translator.
Tradeoffs
1. Flexibility (sharing, growth, virtual memory)
2. Size of data needed to support translation
3. Speed of translation

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Dynamic address translation

24

Example MMU strategies:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Base and bounds
physical
memory

base + bound

base

0

25

Load each process into a
contiguous region of physical
memory.

Prevent process from accessing
data outside its region.

Base register: starting physical
address.

Bound register: size of region.

bound
address
space

0

Base and bounds
physical
memory

base + bound

base

0

bound
address
space

0

26

Pros:

1. Fast.

2. Simple hardware support.

Cons:

1. No virtual memory.

2. External fragmentation.

3. Hard to selectively grow parts of
address space.

4. No controlled sharing.

Root cause: Each address space must be
contiguous in memory.

Segmentation

Divide address space into segments, regions of
memory that are:

1. Contiguous in physical memory.

2. Contiguous in virtual address space.

3. Variable size.

27

Segmentation
physical
memory

46ff

4000
code

2fff

2000

stack

4ff
0 data

virtual
memory

segment 3

fff

0

stack

virtual
memory

segment 1

4ff
0 data

virtual
memory

segment 0

6ff

0
code

28

Segmentation

Virtual address is of the form: (segment #, offset)
Physical address = base for segment + offset

Ways to specify the segment number:
1. High bits of address
2. Special register
3. Implicit to instruction opcode

29

Segment # Base Bounds Description

0 4000 700 code segment

1 0 500 data segment

2 n/a n/a unused

3 2000 1000 stack segment

Valid vs. invalid addresses

Not all virtual addresses are valid.
Valid  address is part of virtual address space.
Invalid  virtual address is illegal to access.

Accessing invalid address causes trap to OS.
Reasons for virtual address being invalid?

Invalid segment number.
Offset within valid segment beyond bound.

30

Segment # Base Bounds Description

0 4000 700 code segment

1 0 500 data segment

2 n/a n/a unused

3 2000 1000 stack segment

Protection

Different segments can have different protection.
Code is usually read only (allows fetch, load,...).
Stack and data are usually read/write (allows load, store,...).

31

Segment # Base Bounds Description

0 4000 700 code segment

1 0 500 data segment

2 n/a n/a unused

3 2000 1000 stack segment

Segmentation

Parts of the address space can grow separately.
How would you grow a segment?
If there’s contiguous free space, can simply extend the bound.
Otherwise, must move it, perhaps compacting memory.

32

Segment # Base Bounds Description

0 4000 700 code segment

1 0 500 data segment

2 n/a n/a unused

3 2000 1000 stack segment

Benefits of Segmentation

Easy to share part of address space.

33

Segment # Base Bounds Description

0 4000 700 code segment

1 0 500 data segment

3 2000 1000 stack segment

Segment # Base Bounds Description

0 4000 700 code segment

1 1000 300 data segment

3 500 1000 stack segment

Process 1

Process 2

Segmentation
Pros:
1. Can grow each segment independently.
2. Can share segments across address spaces.

Cons:
1. Every segment must be smaller than physical memory.
2. Segment allocation is hard.
3. External fragmentation.

Cause: Allocations are of variable amounts of contiguous memory.

34

Paging
Allocate phys. memory in fixed-size units (pages)

Any free physical page can store any virtual page

35

Address Space

Page 1

Page 2

Page 3

Page N

Physical Memory

Paging

Translation data is the page table.

Virtual address is split into:

1. Virtual page # (high bits of
address, e.g., bits 31-12).

2. Offset (low bits of address,
e.g., bits 11-0, for 4 KB page
size).

36

Virtual page # Physical page #

0 105

1 15

2 283

3 invalid

... invalid

1048575 invalid

37

Page Lookups

Phys page #

Page number Offset
Virtual Address

Page Table
Page number Offset
Physical Address

Physical Memory

Paging

• Pros
1. Simple memory allocation
2. Flexible sharing
3. Easy to grow address space

• Cons
1. 32-bit virtual address, 4 KB pages, 4 byte PTEs
2. Page table size?

38

Page table size
Page size is typically 4 KB or 8 KB.
Some architectures support multiple page sizes.

Each process with a 32-bit address space with 4-byte page table entries requires:

232

4096
∗ 4 = 4 𝑀𝑀𝑀𝑀

A 64-bit address space with 8-byte entries requires:

264

4096
∗ 8 = 3.6 ∗ 1016 = 36 𝑃𝑃𝑃𝑃

39

Paging

Pros
1. Simple memory allocation.
2. Flexible sharing.
3. Easy to grow address space.

Cons
1. Large page table size.

But the vast majority of all page table entries will be
marked invalid.

40

41

Sparse Address Space
Virtual
page #

Physical
page #

0 105

1 15

2 283

3 invalid

... invalid

1048572 invalid

1048573 1078

1048574 48136

1048575 60

Stack

Code

Heap

Invalid

Most processes use only a
tiny fraction of their 32 or
64-bit address space.

They usually have a huge
hole in the middle.

So we only need to
represent that part of the
page table that isn’t
marked invalid.

42

A standard page table is a
simple array.

Multi-level paging
generalizes this into a tree,
filling in only the parts of
the tree that aren’t marked
invalid.

With multilevel paging, a
lot of the entries in any
given page table will be
null.

Multi-level Paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

43
Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

When a process starts, a
new L1 page table is
allocated, then filled in
with L2 and L3 leaves as
new pages are made
valid.

When a process ends,
the entire tree of L1, L2
and L3 tables is deleted.

44

Questions:

What must be changed on
a context switch?

How would you share
memory between
processes?

What’s not to like about
this strategy?

Multi-level Paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

45

What must be changed on
a context switch?

Pointer to a level 1 page
table.

Multi-level Paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

46

How would you share
memory between
processes?

Share either individual
pages or large blocks of
pages by sharing a level 1,
2 or 3 entry.

Multi-level Paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

47

What’s not to like about
this strategy?

Every memory access by a
user application requires
multiple table lookups.

Multi-level Paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

Multilevel paging

Pros
1. Simple memory allocation.
2. Flexible sharing.
3. Easy to grow address space.
4. Space-efficient representation of the page table.

Cons
1. Two or more extra lookups per memory reference.

What could be done to solve this?
We can cache the translations in hardware.

48

49
Image source: Wikipedia, “Page table”.

TLB caches the virtual
page number to PTE
mapping.

A cache hit skips all the
translation steps.

A cache miss requires
searching the page
table, updating the TLB,
and restarting the
instruction.

Translation lookaside buffer

50
Image source: Wikipedia, “Page table”.

Translation lookaside buffer

TLB caches the virtual
page number to PTE
mapping.

A cache hit skips all the
translation steps.

A cache miss requires
searching the page table,
updating the TLB, and
restarting the
instruction.

51
Image source: Wikipedia, “Page table”.

Translation lookaside buffer

The TLB is implemented
in hardware as a
content-addressable
memory that acts like a
map in C++.

Page table lookups are
done in software in the
operating system.

Unix process creation

Why first copy the process only to overwrite it?
Even if it makes for a simpler application programming interface (API), isn’t it
still expensive and wasteful?
No, because the operating system uses a virtual memory technique called
copy-on-write.

52

Avoiding work on fork
Copying entire address space is expensive
Instead, Linux/Unix uses copy-on-write.
Maintains a reference count for each physical page.
On fork(), copy only the page table of parent.

Increment reference count by one.
On store by parent or child to page with refcnt > 1:

Make a copy of the page with refcnt of one.
Modify PTE of modifier to point to new page.
Decrement reference count of old page.

53

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 1)

Physical pages

(Refcnt: 1)

(Refcnt: 1)

Parent about to fork().

54

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 2)

(Refcnt: 2)

Copy-on-write of parent address space.

0x00000001
0x00000002
0x00000003

Child page table

55

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 1)

(Refcnt: 2)

Child modifying page 2 causes a copy to be made.

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)

56

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 1)

(Refcnt: 2)

Parent modifying page 2 does not require copying.

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)

57

Copy-on-write: Example

(Refcnt: 1)

Physical pages

(Refcnt: 1)

When the parent exits,
its page table is
deleted and the ref
counts decremented.

If a ref count becomes
0, that page is freed.

The child may continue
running.

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)

58

Making exec() faster

exec() initializes code in the address space.
Naive solution: read file, copy into memory.
Can we do better?

Observation: most code never accessed.
Load code on-demand.
Similar to loading memory paged to disk.

59

Agenda

1. Course details.
2. Processes.
3. Virtual memory.
4. Threads.
5. Locks.
6. Producer-consumer relationships.
7. Multi-reader/single writer locks.

60

61

Threads vs. Processes
Processes provide
concurrency between
applications:

1. High startup costs.

2. One-way inheritance.

3. Lots of “firewalling.”

4. Errant apps can’t
scribble on others.

Threads provide concurrency
within an application:

1. Very low cost to spawn.

2. Only a scheduler entry is
created.

3. Everything else is shared.

4. No protection between
threads.

62

What is a thread?

A simple flow of control that can be separately scheduled.

Its “state” consists of:

1. An instruction pointer,

2. A stack,

3. A register set,

4. Its scheduling priority,

5. Any semaphores or locks it owns.

63

The operating system
Virtual memory, scheduling, file system,
i/o devices

Process 1

Memory
image, open
files, current
directory, a
running
program.

Process 2

Memory
image, open
files, current
directory, a
running
program.

Process n

Memory
image, open
files, current
directory, a
running
program.

…

64

Shared process
Memory image, open files, current directory,
a running program, argc, argv, envp

Thread 1

Instruction
pointer,
register set,
stack pointer,
Scheduling
priority, locks
held

Thread 2

Instruction
pointer,
register set,
stack pointer,
Scheduling
priority, locks
held

Thread n

Instruction
pointer,
register set,
stack pointer,
Scheduling
priority, locks
held

…

65

The operating system

Process
1

Process
2

Process
n

…

Processes provide concurrency
between applications.

High startup costs.

One-way inheritance.

Lots of “firewalling.”

Errant apps can’t scribble on
others.

66

A process

Thread
1

Thread
2

Thread
n

Threads provide concurrency
within an application:

Very low cost to spawn.

Only a scheduler entry is
created.

Everything else is shared.

No protection between
threads.

…

67

A process

Thread
1

Thread
2

Thread
n

A thread is simple flow of
control that can be separately
scheduled.

…

68

A process

Thread
1

Thread
2

Thread
n

A thread’s “state” consists of:

1. An instruction pointer,

2. A stack,

3. A register set,

4. Its scheduling priority, and

5. Any semaphores it owns.

…

69

A process

Thread
1

Thread
2

Thread
n

Every other thread within the
process shares:

1. Memory (instructions and
data),

2. Open handles to files,
processes, pipes, etc.,

3. Current directory, and

4. Environment variables.

…

70

A process

Thread
1

Thread
2

Thread
n

A child thread begins
completely asynchronously
unless you create it in a
suspended state.

If you have an SMP, the kernel
may transparently run any
given thread on any given
processor.

Usually there’s “affinity” for
the last processor a thread on
which a thread ran.

…

71

The argument for threads

1. Allows overlapped activities.
2. Slow activities like I/O can be moved off the critical path.
3. Just because I/O has stalled doesn't mean you can't do other

things while you wait.
4. Much lighter cost to create a thread than to create a process.
5. Lower context switching cost when the scheduler picks a new

thread.
6. Much less cost to share objects between threads because

they all share the same memory space.

72

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

int pthread_join(pthread_t thread, void **retval);

int pthread_detach(pthread_t thread);

The pthread_create() function starts a new thread in the calling process. The new
thread starts execution by invoking start_routine(); arg is passed as the sole argument
of start_routine().

73

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

int pthread_join(pthread_t thread, void **retval);

int pthread_detach(pthread_t thread);

The pthread_join() function waits for the thread specified by thread to terminate and
releases any resources still held. If the thread has already terminated, then
pthread_join() returns immediately.

74

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

int pthread_join(pthread_t thread, void **retval);

int pthread_detach(pthread_t thread);

pthread_detach() function marks the thread identified by thread as detached. When
a detached thread terminates, its resources are automatically released back to the
system without the need for another thread to join with the terminated thread.

75

$ head -1 LinuxHelloMT.cpp
// Simple multi-threaded hello world program.
$ g++ LinuxHelloMT.cpp -pthread -o LinuxHelloMT
$./LinuxHelloMT
Starting child
Waiting for child
Hello from the child!
Child has exited
$

76

// Simple multi-threaded Linux hello world program.

#include <stdlib.h>
#include <pthread.h>
#include <iostream>
using namespace std;

void *Hello(void *p)
{
cout << "Hello from the child!" << endl;
}

int main(int argc, char **argv)
{
cout << "Starting child" << endl;
pthread_t child;

pthread_create(&child, nullptr, Hello, nullptr);

cout << "Waiting for child" << endl;
pthread_join(child, NULL);

cout << "Child has exited" << endl;
}

Agenda

1. Course details.
2. Processes.
3. Virtual memory.
4. Threads.
5. Locks.
6. Producer-consumer relationships.
7. Multi-reader/single writer locks.

77

Locks

1. All the threads share the same memory space. If one makes
a change, it’s instantly see by the others.

2. Must avoid scribbling on data being read by another thread.

3. If a data structure is being updated, other threads should
not be reading it until the update is finished.

4. They need a protocol for locking the data, establishing
ownership.

78

Locks

The problem is called Mutual Exclusion, meaning that if
any is allowed, the rest are excluded.

On Linux, the mechanism we’ll use is the pthread
mutex.

79

Atomic operations

Before we can reason at all about cooperating threads, we must
know that some operation is atomic.

1. It’s indivisible. It happens in its entirety or not at all.

2. No events from other threads can occur in between when
it starts and when it finishes.

80

Atomic operations

On most computers:

1. Memory load and store are atomic.

2. Many other instructions, e.g., double precision
floating point, are not atomic.

Need an atomic operation to build bigger atomic
operations.

81

Example

Which thread will exit its while loop first?
Is the thread that exits the while first guaranteed to print first?
Is it guaranteed that anything will print?

82

Thread A
i = 0;
while (i < 10)

i++;
print "A finished";

Thread B
i = 0;
while (i > -10)

i--;
print "B finished";

Assume i is a global shared variable.

Debugging Multi-Threaded Programs

Challenging due to non-deterministic interleaving.

Heisenbug: a bug that occurs non-deterministically.

83

All possible interleavings must be correct.

Synchronization
Objective:

Constrain interleavings between threads such that all possible interleavings produce a
correct result.

Trivial solution:

Run each until it finishes before starting the next but that defeats the purpose of
threads.

Challenge:

Constrain thread executions as little as possible.

Insight:

Some events are independent  order is irrelevant.

Other events are dependent  order matters.

84

pthread_mutex_init() initializes the mutex to an unlocked state. If attr is
NULL, the default attributes are used

pthread_mutex_destroy() destroys the mutex object referenced by mutex.

In cases where default mutex attributes are appropriate, the macro
PTHREAD_MUTEX_INITIALIZER can be used to initialize mutexes that are
statically allocated.

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_destroy(pthread_mutex_t *mutex);

pthread_mutex_lock(), pthread_mutex_trylock(), and
pthread_mutex_unlock() lock and unlock a mutex.

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

87

Within each child thread:

pthread_mutex_lock(&lock);

// Read or write the shared
data.

pthread_mutex_unlock(&lock);

In the main thread:

pthread_mutex_t lock;

pthread_mutex_init(&lock, nullptr);

// Create lots of threads.

pthread_create(...);

// Wait for them to finish.

pthread_join(...);

pthread_mutex_destroy(&lock);

Semaphore

A related problem is that the threads need to signal each other
when events happen, e.g., when one has input for the other.

This done with a semaphore in Linux.

88

sem_init() initializes an unnamed semaphore.

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

sem_wait, sem_timedwait, sem_trywait allow you to lock a
semaphore.

#include <semaphore.h>

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

sem_post() unlocks a semaphore, waking up anyone that’s
waiting.

#include <semaphore.h>

int sem_post(sem_t *sem);

92

Within each child thread:

// To signal that data is
available.

sem_post(&available);

// To wait for data.

sem_wait(&available);

In the main thread:

sem_t available;

sem_init(&available, 0, 0);

// Create lots of threads.

pthread_create(...);

// Wait for them to finish.

pthread_join(...);

sem_destroy(&available);

Agenda

1. Course details.
2. Processes.
3. Virtual memory.
4. Threads.
5. Locks.
6. Producer-consumer relationships.
7. Multi-reader/single writer locks.

93

Producer-Consumer relationships

1. Basic notion: Two threads that cooperate so that each
consumes what the other produces.

2. Must share data, locking it before any access.

3. Sleeping when waiting for input.

95

Example
A multi-threaded cat utility that uses one thread to read input
and one to write output.

1. Activity A consumes empty buffers and produces full buffers.

2. Activity B consumes full buffers and produces empty buffers.

3. A pool of buffers is used to minimize blocking.

A B

96

Producer-Consumer Strategy
When an activity needs input,
1. It locks the input list.
2. If the input list is not empty then

It takes an item and releases the lock.
else

It clears the “data available” event,
Releases the lock,
Sleeps on “data available
Starts over at the top.

When an activity has output,
1. It locks the output list,
2. Puts the item on the list,

signals “data available”
and releases the lock.

97

$ head -1 LinuxCatMT.cpp
// Linux multi-threaded cat routine.
$ g++ LinuxCatMT.cpp -pthread -o LinuxCatMT
$ wc LinuxCatMT.cpp
135 346 2688 LinuxCatMT.cpp
$./LinuxCatMT < LinuxCatMT.cpp | wc

135 346 2688
$

int main(int argc, char **argv)
{
SharedList< Buffer > empty, full;
// put 5 empty nodes on the empty list;
for (int i = 5; i--;)

Empty.Put(new Node< Buffer >);

pthread_t child;

/* Spawn the reader as a child thread. */
pthread_create(&child, nullptr, Reader, nullptr);

/* Do the writing in this thread. */
Writer();
}

The basic idea:

1. Create two lists of empty and full
buffers and start with 5 empty buffers.

2. Spawn a child thread to fill buffers,
reading from stdin.

3. In the main thread, copy those buffers
to stdout.

4. Anytime a thread wants to examine a
list, it must lock it.

5. When the reader has data for the
writer, it should signal it with a
semaphore.

// Linux multi-threaded cat routine.

#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <cassert>

struct Buffer
{
char Block[1024];
ssize_t Length;
};

template< typename T > struct Node
{
Node *next;
T Data;

Node() : next(nullptr)
{
}

};

template< typename T > class SharedList
{
private:

Node< T > *top, *bottom;
sem_t available;
pthread_mutex_t lock;

public:

SharedList() : top(nullptr), bottom(nullptr)
{
pthread_mutex_init(&lock, nullptr);
// Mac OSX: available = sem_open("/semaphore", O_CREAT, 0644, 1));
sem_init(&available, 0, 0);
}

~SharedList()
{
pthread_mutex_destroy(&lock);
sem_destroy(&available);
}

Node< T > *Get()
{
Node< T > *a;
sem_wait(&available);
pthread_mutex_lock(&lock);
a = top;
assert(a);
if ((top = a->next) == nullptr)

bottom = nullptr;
a->next = nullptr;
pthread_mutex_unlock(&lock);
return a;
}

void Put(Node< T > *a)
{
pthread_mutex_lock(&lock);
if (bottom)

bottom = bottom->next = a;
else

top = bottom = a;
sem_post(&available);
pthread_mutex_unlock(&lock);
}

};

SharedList< Buffer > Empty, Full;

void *Reader(void *p)
{
Node< Buffer > *e;
ssize_t length;

do
{
e = Empty.Get();
e->Data.Length = read(0, e->Data.Block, sizeof(e->Data.Block));
length = e->Data.Length; /* Why? */
Full.Put(e);
}

while (length > 0);
}

void Writer(void)
{
Node< Buffer > *f;
ssize_t length;

while (f = Full.Get(), f->Data.Length > 0)
{
write(1, f->Data.Block, f->Data.Length);
Empty.Put(f);
}

}

int main(int argc, char **argv)
{
SharedList< Buffer > empty, full;
// put 5 empty nodes on the empty list;
for (int i = 5; i--;)

Empty.Put(new Node< Buffer >);

pthread_t child;

/* Spawn the reader as a child thread. */
pthread_create(&child, nullptr, Reader, nullptr);

/* Do the writing in this thread. */
Writer();
}

Agenda

1. Course details.
2. Processes.
3. Virtual memory.
4. Threads.
5. Locks.
6. Producer-consumer relationships.
7. Multi-reader/single writer locks.

104

Basic problem

1. You have object in memory you would like to share between
threads.

2. It doesn’t change very often but it gets read a lot.

3. Lots of threads can share access that object if they’re all just
reading it.

4. But if any thread wants to write to it, it must lock out all the
other threads while it does that.

105

Multiple reader / single writer problem

I’m going to ask you to try solving it.
It does show up on whiteboard interviews.

1. We’ll assume some simple mutex and signaling facilities
mapped to the OS.

2. I’ve give you a chance to invent your own solution. (Sorry, no
autograder.)

3. I’ll show you some known solutions but not today (and no, it
won’t be on the midterm.)

106

107

// Assume some basic Mutex and Signal mechanisms provided
// by the OS that we might wrapper as follows.

class Mutex
{
private:

// ... a handle from the OS

public:
// Simple mutual exclusion.
Take();
Release();

Mutex();
~Mutex();

};

108

class Signal
{
private:

// ... a handle from the OS
public:

// Simple signaling mechanism that can be set (true)
// reset (false).

// Wait for the signal to be set.
// If it's not set, you sleep until it is.
// Waiting for signal to be set does not reset it.
// Other waiting threads will also wake up so long
// as the signal remains set.

void Wait();

// Set or reset it.
void Set();
void Reset();

Signal(bool initialState = false);
~Signal();

};

109

// Here is the multiple reader / single writer interface
// to be built.

class SharedReader
{
public:

virtual void ReadLock() = 0;
virtual void ReleaseReadLock() = 0;
virtual void WriteLock() = 0;
virtual void ReleaseWriteLock() = 0;

};

	EECS 440 System Design of a Search Engine�Winter 2019�Lecture 9: Threads, locks and�producer/consumer relationships
	Agenda
	Agenda
	details
	Reading list
	Slide Number 6
	Agenda
	The Process Model
	Process creation
	Unix process creation
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Unix process creation
	Slide Number 18
	Unix process creation
	Agenda
	Address Spaces
	Dynamic address translation
	Dynamic address translation
	Dynamic address translation
	Base and bounds
	Base and bounds
	Segmentation
	Segmentation
	Segmentation
	Valid vs. invalid addresses
	Protection
	Segmentation
	Benefits of Segmentation
	Segmentation
	Paging
	Paging
	Page Lookups
	Paging
	Page table size
	Paging
	Sparse Address Space
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Multilevel paging
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Unix process creation
	Avoiding work on fork
	Copy-on-write: Example
	Copy-on-write: Example
	Copy-on-write: Example
	Copy-on-write: Example
	Copy-on-write: Example
	Making exec() faster
	Agenda
	Threads vs. Processes
	What is a thread?
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	The argument for threads
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Agenda
	Locks
	Locks
	Atomic operations
	Atomic operations
	Example
	Debugging Multi-Threaded Programs
	Synchronization
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Semaphore
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Agenda
	Producer-Consumer relationships
	Example
	Producer-Consumer Strategy
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Agenda
	Basic problem
	Multiple reader / single writer problem
	Slide Number 107
	Slide Number 108
	Slide Number 109

