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details
1. HtmlParser AG fixed.  All submissions have been 

rerun.
2. LinuxGetUrl and LinuxGetSsl now due Feb 28.
3. String/vector, one per team, due Mar 7.
4. More shuffling of due dates still possible.
5. Hope to read your bios and your plans this 

weekend.  Apologies for being slow. 
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Reading list

Please read the first 3 
main articles by Dennis 
Ritchie and Ken 
Thompson.
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http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf

Image source:  https://en.wikipedia.org/wiki/Dennis_Ritchie#/media/File:Ken_Thompson_and_Dennis_Ritchie.jpg

http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
https://en.wikipedia.org/wiki/Dennis_Ritchie#/media/File:Ken_Thompson_and_Dennis_Ritchie.jpg
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The first one is especially 
helpful.
Here’s a better PDF.
I may test you on it.

https://people.eecs.berkeley.edu/~brewer/cs262/unix.pdf

https://people.eecs.berkeley.edu/%7Ebrewer/cs262/unix.pdf
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The Process Model
1. Each process is protected from other processes.
2. Owns resources:

a. Memory (instructions, stack, data)
b. Open handles to files, pipes, semaphores, 

etc.
3. Can also share resources, e.g., blocks of memory.
4. Has “state” information:

a. Current directory
b. Environment variables
c. One or more threads of execution

5. One-way inheritance to children.



Process creation

1. When you type a command into a Unix shell, it creates a 
child process to run that command.

2. The child process is traditionally created by a fork( ) + exec( ).

3. fork( ) creates an exact duplicate of the calling process and 
returns 0 to the child and the process id of the child to the 
parent.

4. exec( ) overlays the current process with a new executable 
image, but retaining any open handles.
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Unix process creation
System uses a sequence of two calls to start a process:
1. fork( ) creates a copy of current process.
2. exec( program, args ) replaces current address space with 

specified program.
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#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

fork() creates a new process by duplicating the calling process.  The new 
process is referred to as the child process.  The calling process is referred to 
as the parent process.

The child process and the parent process run in separate memory spaces.  
At the time of fork() both memory spaces have the same content.
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#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

The child process is an exact duplicate of the parent process except for the 
following points:

1. The child has its own unique process ID.

2. The child's parent process ID is the same as the parent's process   ID.

3. The child does not inherit its parent's memory locks, timers, pending 
signals and outstanding asynchronous I/O.
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#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ..., NULL */);
int execlp(const char *file, const char *arg, ...

/* (char  *) NULL */);
int execle(const char *path, const char *arg, ...

/*, (char *) NULL, char * const envp[] */);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[],

char *const envp[]);

The exec() family of functions replaces the current process image with a new process 
image.

The initial argument for these functions is the name of a file that is to be executed.
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#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

The waitpid() function suspends execution of the calling thread until child 
process terminates then returns information about its exit status.
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$ g++ LinuxForkExec.cpp -o LinuxForkExec
$ ./LinuxForkExec wc LinuxForkExec.cpp
parent waiting for child
child starting wc
38 117 861 LinuxForkExec.cpp
child has exited with status = 0
$



#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
#include <iostream>
using namespace std;

int main( int argc, char **argv )
{
if ( --argc == 0 )

{
cerr << "Usage:  LinuxForkExec command arguments" << endl;
return 1;
}

pid_t processId = fork( );
if ( processId )

{
// parent process
cout << "parent waiting for child" << endl;
int waitStatus;
waitpid( processId, &waitStatus, 0 );
cout << "child has exited with status = " << WEXITSTATUS( waitStatus )

<< endl;
}

else
{
// child process
argv++;
cout << "child starting " << *argv << endl;
execvp( *argv, argv );
cout << "this never prints" << endl;
}

}



Unix process creation

Why first copy the process only to overwrite it?
Allows sharing of code, file descriptors, other state information and results in 
a simple interface.
Windows by contrast, uses a single CreateProcess( ) system call, but 
requires a very complex set of arguments to deal with all the possible cases.
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BOOL CreateProcessA(
LPCSTR lpApplicationName,
LPSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCSTR lpCurrentDirectory,
LPSTARTUPINFOA lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation

);

BOOL CreateProcessW(
LPCWSTR lpApplicationName,
LPWSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCWSTR lpCurrentDirectory,
LPSTARTUPINFOW lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation

);

There is no fork( ).

Creates the child running a new 
executable, returns a handle to the 
child.

argv is passed as a string, not an 
array.

Child process retrieves the 
command line with 
GetCommandLine( ).  C runtime 
turns that into argc, argv.

Slightly complex rules for words 
containing spaces or quotes.

Lots of options for debugging, etc.

Two versions.

Windows CreateProcess



Unix process creation

Why first copy the process only to overwrite it?
Even if it makes for a simpler application programming interface (API), isn’t it 
still expensive and wasteful?
No, because the operating system uses a virtual memory technique called 
copy-on-write.
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Address Spaces

• Hardware interface:
– All processes share physical memory

• OS abstraction:
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bound Process A

0

bound Process B

0

bound Process C

0



Dynamic address translation

Address independence

Virtual addresses are scoped to 1 process.

Protection

One process can’t refer to another’s address space.

Virtual memory

VA only needs to be in physical memory when accessed.

Allows changing translations on the fly.
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Dynamic address translation
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Many ways to implement the translator.
Tradeoffs
1. Flexibility (sharing, growth, virtual memory)
2. Size of data needed to support translation
3. Speed of translation

user 
process

translator 
(MMU)

physical 
memoryvirtual

address
physical
address



Dynamic address translation
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Example MMU strategies:
1. Base and bounds.
2. Segmentation.
3. Paging.

user 
process

translator 
(MMU)

physical 
memoryvirtual

address
physical
address



Base and bounds
physical
memory

base + bound

base

0
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Load each process into a 
contiguous region of physical 
memory.

Prevent process from accessing 
data outside its region.

Base register: starting physical 
address.

Bound register: size of region.

bound
address 
space

0



Base and bounds
physical
memory

base + bound

base

0

bound
address 
space

0
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Pros:

1. Fast.

2. Simple hardware support.

Cons:

1. No virtual memory.

2. External fragmentation.

3. Hard to selectively grow parts of 
address space.

4. No controlled sharing.

Root cause: Each address space must be 
contiguous in memory.



Segmentation

Divide address space into segments, regions of 
memory that are:

1. Contiguous in physical memory.

2. Contiguous in virtual address space.

3. Variable size.
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Segmentation
physical
memory
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Segmentation

Virtual address is of the form: (segment #, offset)
Physical address = base for segment + offset

Ways to specify the segment number:
1. High bits of address 
2. Special register
3. Implicit to instruction opcode
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Segment # Base Bounds Description

0 4000 700 code segment

1 0 500 data segment

2 n/a n/a unused

3 2000 1000 stack segment



Valid vs. invalid addresses

Not all virtual addresses are valid.
Valid  address is part of virtual address space.
Invalid  virtual address is illegal to access.

Accessing invalid address causes trap to OS.
Reasons for virtual address being invalid?

Invalid segment number.
Offset within valid segment beyond bound.
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Segment # Base Bounds Description

0 4000 700 code segment

1 0 500 data segment

2 n/a n/a unused

3 2000 1000 stack segment



Protection

Different segments can have different protection.
Code is usually read only (allows fetch, load,...).
Stack and data are usually read/write (allows load, store,...).
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Segment # Base Bounds Description

0 4000 700 code segment

1 0 500 data segment

2 n/a n/a unused

3 2000 1000 stack segment



Segmentation

Parts of the address space can grow separately.
How would you grow a segment?
If there’s contiguous free space, can simply extend the bound.
Otherwise, must move it, perhaps compacting memory.
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Segment # Base Bounds Description

0 4000 700 code segment

1 0 500 data segment

2 n/a n/a unused

3 2000 1000 stack segment



Benefits of Segmentation

Easy to share part of address space.
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Segment # Base Bounds Description

0 4000 700 code segment

1 0 500 data segment

3 2000 1000 stack segment

Segment # Base Bounds Description

0 4000 700 code segment

1 1000 300 data segment

3 500 1000 stack segment

Process 1

Process 2



Segmentation
Pros:
1. Can grow each segment independently.
2. Can share segments across address spaces.

Cons:
1. Every segment must be smaller than physical memory.
2. Segment allocation is hard.
3. External fragmentation.

Cause: Allocations are of variable amounts of contiguous memory.
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Paging
Allocate phys. memory in fixed-size units (pages)

Any free physical page can store any virtual page

35

Address Space

Page 1

Page 2

Page 3

Page N

Physical Memory



Paging

Translation data is the page table.

Virtual address is split into:

1. Virtual page # (high bits of 
address, e.g., bits 31-12).

2. Offset (low bits of address, 
e.g., bits 11-0, for 4 KB page 
size).
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Virtual page # Physical page #

0 105

1 15

2 283

3 invalid

... invalid

1048575 invalid
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Page Lookups

Phys page #

Page number Offset
Virtual Address

Page Table
Page number Offset
Physical Address

Physical Memory



Paging

• Pros
1. Simple memory allocation
2. Flexible sharing
3. Easy to grow address space

• Cons
1. 32-bit virtual address, 4 KB pages, 4 byte PTEs
2. Page table size?
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Page table size
Page size is typically 4 KB or 8 KB.
Some architectures support multiple page sizes.

Each process with a 32-bit address space with 4-byte page table entries requires:

232

4096
∗ 4 = 4 𝑀𝑀𝑀𝑀

A 64-bit address space with 8-byte entries requires:

264

4096
∗ 8 = 3.6 ∗ 1016 = 36 𝑃𝑃𝑃𝑃
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Paging

Pros
1. Simple memory allocation.
2. Flexible sharing.
3. Easy to grow address space.

Cons
1. Large page table size.

But the vast majority of all page table entries will be 
marked invalid.
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Sparse Address Space
Virtual
page #

Physical
page #

0 105

1 15

2 283

3 invalid

... invalid

1048572 invalid

1048573 1078

1048574 48136

1048575 60

Stack

Code

Heap

Invalid

Most processes use only a 
tiny fraction of their 32 or 
64-bit address space.

They usually have a huge 
hole in the middle.

So we only need to 
represent that part of the 
page table that isn’t 
marked invalid.
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A standard page table is a 
simple array.

Multi-level paging 
generalizes this into a tree, 
filling in only the parts of 
the tree that aren’t marked 
invalid.

With multilevel paging, a 
lot of the entries in any 
given page table will be 
null.

Multi-level Paging

Image source:  Anderson & Dahlin, Operating Systems:  Principles and Practice, p. 398.



43
Image source:  Anderson & Dahlin, Operating Systems:  Principles and Practice, p. 398.

When a process starts, a 
new L1 page table is 
allocated, then filled in 
with L2 and L3 leaves as 
new pages are made 
valid.

When a process ends, 
the entire tree of L1, L2 
and L3 tables is deleted.
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Questions:

What must be changed on 
a context switch?

How would you share 
memory between 
processes?

What’s not to like about 
this strategy?

Multi-level Paging

Image source:  Anderson & Dahlin, Operating Systems:  Principles and Practice, p. 398.
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What must be changed on 
a context switch?

Pointer to a level 1 page 
table.

Multi-level Paging

Image source:  Anderson & Dahlin, Operating Systems:  Principles and Practice, p. 398.
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How would you share 
memory between 
processes?

Share either individual 
pages or large blocks of 
pages by sharing a level 1, 
2 or 3 entry.

Multi-level Paging

Image source:  Anderson & Dahlin, Operating Systems:  Principles and Practice, p. 398.
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What’s not to like about 
this strategy?

Every memory access by a 
user application requires 
multiple table lookups.

Multi-level Paging

Image source:  Anderson & Dahlin, Operating Systems:  Principles and Practice, p. 398.



Multilevel paging

Pros
1. Simple memory allocation.
2. Flexible sharing.
3. Easy to grow address space.
4. Space-efficient representation of the page table.

Cons
1. Two or more extra lookups per memory reference.

What could be done to solve this?
We can cache the translations in hardware.
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Image source:  Wikipedia, “Page table”.

TLB caches the virtual 
page number to PTE 
mapping.

A cache hit skips all the 
translation steps.

A cache miss requires 
searching the page 
table, updating the TLB, 
and restarting the  
instruction.

Translation lookaside buffer
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Image source:  Wikipedia, “Page table”.

Translation lookaside buffer

TLB caches the virtual 
page number to PTE 
mapping.

A cache hit skips all the 
translation steps.

A cache miss requires 
searching the page table, 
updating the TLB, and 
restarting the  
instruction.
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Image source:  Wikipedia, “Page table”.

Translation lookaside buffer

The TLB is implemented 
in hardware as a 
content-addressable 
memory that acts like a 
map in C++.

Page table lookups are 
done in software in the 
operating system.



Unix process creation

Why first copy the process only to overwrite it?
Even if it makes for a simpler application programming interface (API), isn’t it 
still expensive and wasteful?
No, because the operating system uses a virtual memory technique called 
copy-on-write.

52



Avoiding work on fork
Copying entire address space is expensive
Instead, Linux/Unix uses copy-on-write.
Maintains a reference count for each physical page.
On fork( ), copy only the page table of parent.

Increment reference count by one.
On store by parent or child to page with refcnt > 1:

Make a copy of the page with refcnt of one.
Modify PTE of modifier to point to new page.
Decrement reference count of old page.

53



Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 1)

Physical pages

(Refcnt: 1)

(Refcnt: 1)

Parent about to fork( ).

54



Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 2)

(Refcnt: 2)

Copy-on-write of parent address space.

0x00000001
0x00000002
0x00000003

Child page table

55



Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 1)

(Refcnt: 2)

Child modifying page 2 causes a copy to be made.

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)
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Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 1)

(Refcnt: 2)

Parent modifying page 2 does not require copying.

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)
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Copy-on-write: Example

(Refcnt: 1)

Physical pages

(Refcnt: 1)

When the parent exits, 
its page table is 
deleted and the ref 
counts decremented.

If a ref count becomes 
0, that page is freed.

The child may continue 
running.

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)
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Making exec() faster

exec( ) initializes code in the address space.
Naive solution: read file, copy into memory.
Can we do better?

Observation: most code never accessed.
Load code on-demand.
Similar to loading memory paged to disk.
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Threads vs. Processes
Processes provide 
concurrency between
applications:

1. High startup costs.

2. One-way inheritance.

3. Lots of “firewalling.”

4. Errant apps can’t 
scribble on others.

Threads provide concurrency 
within an application:

1. Very low cost to spawn.

2. Only a scheduler entry is 
created.

3. Everything else is shared.

4. No protection between 
threads.
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What is a thread?

A simple flow of control that can be separately scheduled.

Its “state” consists of:

1. An instruction pointer,

2. A stack,

3. A register set,

4. Its scheduling priority,

5. Any semaphores or locks it owns.
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The operating system
Virtual memory, scheduling, file system,
i/o devices

Process 1

Memory 
image, open 
files, current 
directory, a 
running 
program.

Process 2

Memory 
image, open 
files, current 
directory, a 
running 
program.

Process n

Memory 
image, open 
files, current 
directory, a 
running 
program.

…
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Shared process
Memory image, open files, current directory,
a running program, argc, argv, envp

Thread 1

Instruction 
pointer,
register set,
stack pointer,
Scheduling 
priority, locks 
held

Thread 2

Instruction 
pointer,
register set,
stack pointer,
Scheduling 
priority, locks 
held

Thread n

Instruction 
pointer,
register set,
stack pointer,
Scheduling 
priority, locks 
held

…
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The operating system

Process 
1

Process 
2

Process 
n

…

Processes provide concurrency 
between applications.

High startup costs.

One-way inheritance.

Lots of “firewalling.”

Errant apps can’t scribble on 
others.
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A process

Thread 
1

Thread 
2

Thread 
n

Threads provide concurrency 
within an application:

Very low cost to spawn.

Only a scheduler entry is 
created.

Everything else is shared.

No protection between 
threads.

…
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A process

Thread 
1

Thread 
2

Thread 
n

A thread is simple flow of 
control that can be separately 
scheduled.

…
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A process

Thread 
1

Thread 
2

Thread 
n

A thread’s “state” consists of:

1. An instruction pointer,

2. A stack,

3. A register set,

4. Its scheduling priority, and

5. Any semaphores it owns.

…
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A process

Thread 
1

Thread 
2

Thread 
n

Every other  thread within the 
process shares:

1. Memory (instructions and 
data),

2. Open handles to files, 
processes, pipes, etc.,

3. Current directory, and

4. Environment variables.

…



70

A process

Thread 
1

Thread 
2

Thread 
n

A child thread begins 
completely asynchronously 
unless you create it in a 
suspended state.

If you have an SMP, the kernel 
may transparently run any 
given thread on any given 
processor.

Usually there’s “affinity” for 
the last processor a thread on 
which a thread ran.

…
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The argument for threads

1. Allows overlapped activities.
2. Slow activities like I/O can be moved off the critical path.
3. Just because I/O has stalled doesn't mean you can't do other 

things while you wait.
4. Much lighter cost to create a thread than to create a process.
5. Lower context switching cost when the scheduler picks a new 

thread.
6. Much less cost to share objects between threads because 

they all share the same memory space.
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#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

int pthread_join(pthread_t thread, void **retval);

int pthread_detach(pthread_t thread);

The pthread_create() function starts a new thread in the calling process.  The new 
thread starts execution by invoking start_routine(); arg is passed as the sole argument 
of start_routine().
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#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

int pthread_join(pthread_t thread, void **retval);

int pthread_detach(pthread_t thread);

The pthread_join() function waits for the thread specified by thread to terminate and 
releases any resources still held.  If the thread has already terminated, then 
pthread_join() returns immediately.
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#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

int pthread_join(pthread_t thread, void **retval);

int pthread_detach(pthread_t thread);

pthread_detach() function marks the thread identified by thread as detached.  When 
a detached thread terminates, its resources are automatically released back to the 
system without the need for another thread to join with the terminated thread.
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$ head -1 LinuxHelloMT.cpp
// Simple multi-threaded hello world program.
$ g++ LinuxHelloMT.cpp -pthread -o LinuxHelloMT
$ ./LinuxHelloMT
Starting child
Waiting for child
Hello from the child!
Child has exited
$
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// Simple multi-threaded Linux hello world program.

#include <stdlib.h>
#include <pthread.h>
#include <iostream>
using namespace std;

void *Hello( void *p )
{
cout << "Hello from the child!" << endl;
}

int main( int argc, char **argv )
{
cout << "Starting child" << endl;
pthread_t child;

pthread_create( &child, nullptr, Hello, nullptr );

cout << "Waiting for child" << endl;
pthread_join( child, NULL );

cout << "Child has exited" << endl;
}
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Locks

1. All the threads share the same memory space.  If one makes 
a change, it’s instantly see by the others.

2. Must avoid scribbling on data being read by another thread.

3. If a data structure is being updated, other threads should 
not be reading it until the update is finished.

4. They need a protocol for locking the data, establishing 
ownership.
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Locks

The problem is called Mutual Exclusion, meaning that if 
any is allowed, the rest are excluded.

On Linux, the mechanism we’ll use is the pthread
mutex.
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Atomic operations

Before we can reason at all about cooperating threads, we must 
know that some operation is atomic.

1. It’s indivisible. It happens in its entirety or not at all.

2. No events from other threads can occur in between when 
it starts and when it finishes.
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Atomic operations

On most computers:

1. Memory load and store are atomic.

2. Many other instructions, e.g., double precision 
floating point, are not atomic.

Need an atomic operation to build bigger atomic 
operations.
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Example

Which thread will exit its while loop first?
Is the thread that exits the while first guaranteed to print first?
Is it guaranteed that anything will print?
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Thread A
i = 0;
while ( i < 10 )

i++;
print "A finished";

Thread B
i = 0;
while ( i > -10 )

i--;
print "B finished";

Assume i is a global shared variable.



Debugging Multi-Threaded Programs

Challenging due to non-deterministic interleaving.

Heisenbug: a bug that occurs non-deterministically.

83

All possible interleavings must be correct.



Synchronization
Objective:

Constrain interleavings between threads such that all possible interleavings produce a 
correct result.

Trivial solution:

Run each until it finishes before starting the next but that defeats the purpose of 
threads.

Challenge:

Constrain thread executions as little as possible.

Insight:

Some events are independent  order is irrelevant.

Other events are dependent  order matters.
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pthread_mutex_init( ) initializes the mutex to an unlocked state. If attr is 
NULL, the default attributes are used

pthread_mutex_destroy( ) destroys the mutex object referenced by mutex.

In cases where default mutex attributes are appropriate, the macro 
PTHREAD_MUTEX_INITIALIZER can be used to initialize mutexes that are 
statically allocated.

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_destroy(pthread_mutex_t *mutex);



pthread_mutex_lock( ), pthread_mutex_trylock( ), and 
pthread_mutex_unlock( ) lock and unlock a mutex.

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);
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Within each child thread:

pthread_mutex_lock( &lock );

// Read or write the shared 
data.

pthread_mutex_unlock( &lock );

In the main thread:

pthread_mutex_t lock;

pthread_mutex_init( &lock, nullptr );

// Create lots of threads.

pthread_create( ... );

// Wait for them to finish.

pthread_join( ... );

pthread_mutex_destroy( &lock );



Semaphore

A related problem is that the threads need to signal each other 
when events happen, e.g., when one has input for the other.

This done with a semaphore in Linux.
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sem_init( ) initializes an unnamed semaphore.

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);



sem_wait, sem_timedwait, sem_trywait allow you to lock a 
semaphore.

#include <semaphore.h>

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);



sem_post( ) unlocks a semaphore, waking up anyone that’s 
waiting.

#include <semaphore.h>

int sem_post(sem_t *sem);
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Within each child thread:

// To signal that data is 
available.

sem_post( &available );

// To wait for data.

sem_wait( &available );

In the main thread:

sem_t available;

sem_init( &available, 0, 0 );

// Create lots of threads.

pthread_create( ... );

// Wait for them to finish.

pthread_join( ... );

sem_destroy( &available );
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1. Course details.
2. Processes.
3. Virtual memory.
4. Threads.
5. Locks.
6. Producer-consumer relationships.
7. Multi-reader/single writer locks.
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Producer-Consumer relationships

1. Basic notion:  Two threads that cooperate so that each 
consumes what the other produces.

2. Must share data, locking it before any access.

3. Sleeping when waiting for input.
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Example
A multi-threaded cat utility that uses one thread to read input 
and one to write output.

1. Activity A consumes empty buffers and produces full buffers.

2. Activity B consumes full buffers and produces empty buffers.

3. A pool of buffers is used to minimize blocking.

A B
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Producer-Consumer Strategy
When an activity needs input,
1. It locks the input list.
2. If the input list is not empty then

It takes an item and releases the lock.
else

It clears the “data available” event,
Releases the lock,
Sleeps on “data available
Starts over at the top.

When an activity has output,
1. It locks the output list,
2. Puts the item on the list, 

signals “data available” 
and releases the lock.
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$ head -1 LinuxCatMT.cpp
// Linux multi-threaded cat routine.
$ g++ LinuxCatMT.cpp -pthread -o LinuxCatMT
$ wc LinuxCatMT.cpp
135  346 2688 LinuxCatMT.cpp
$ ./LinuxCatMT < LinuxCatMT.cpp | wc

135     346    2688
$



int main( int argc, char **argv )
{
SharedList< Buffer > empty, full;
// put 5 empty nodes on the empty list;
for ( int i = 5; i--;  )

Empty.Put( new Node< Buffer > );

pthread_t child;

/* Spawn the reader as a child thread. */
pthread_create( &child, nullptr, Reader, nullptr );

/* Do the writing in this thread. */
Writer();
} 

The basic idea:

1. Create two lists of empty and full 
buffers and start with 5 empty buffers.

2. Spawn a child thread to fill buffers, 
reading from stdin.

3. In the main thread, copy those buffers 
to stdout.

4. Anytime a thread wants to examine a 
list, it must lock it.

5. When the reader has data for the 
writer, it should signal it with a 
semaphore.



// Linux multi-threaded cat routine.

#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <cassert>

struct Buffer
{
char Block[ 1024 ];
ssize_t Length;
};

template< typename T > struct Node
{
Node *next;
T Data;

Node( ) : next( nullptr )
{
}

};



template< typename T > class SharedList
{
private:

Node< T > *top, *bottom;
sem_t available;
pthread_mutex_t lock;

public:

SharedList( ) : top( nullptr ), bottom( nullptr ) 
{
pthread_mutex_init( &lock, nullptr );
// Mac OSX:  available = sem_open( "/semaphore", O_CREAT, 0644, 1 ) ); 
sem_init( &available, 0, 0 );
}

~SharedList( )
{
pthread_mutex_destroy( &lock );
sem_destroy( &available );
}



Node< T > *Get( )
{
Node< T > *a;
sem_wait( &available );
pthread_mutex_lock( &lock );
a = top;
assert( a );
if ( ( top = a->next ) == nullptr )

bottom = nullptr;
a->next = nullptr;
pthread_mutex_unlock( &lock );
return a;
}

void Put( Node< T > *a )
{
pthread_mutex_lock( &lock );
if ( bottom )

bottom = bottom->next = a;
else

top = bottom = a;
sem_post( &available );
pthread_mutex_unlock( &lock );
}

};



SharedList< Buffer > Empty, Full;

void *Reader( void *p )
{
Node< Buffer > *e;
ssize_t length;

do
{
e = Empty.Get( );
e->Data.Length = read( 0, e->Data.Block, sizeof( e->Data.Block ) );
length = e->Data.Length;  /* Why? */
Full.Put( e );
}

while ( length > 0 );
}

void Writer( void )
{
Node< Buffer > *f;
ssize_t length;

while ( f = Full.Get( ), f->Data.Length > 0 )
{
write( 1, f->Data.Block, f->Data.Length );
Empty.Put( f );
}

}



int main( int argc, char **argv )
{
SharedList< Buffer > empty, full;
// put 5 empty nodes on the empty list;
for ( int i = 5; i--;  )

Empty.Put( new Node< Buffer > );

pthread_t child;

/* Spawn the reader as a child thread. */
pthread_create( &child, nullptr, Reader, nullptr );

/* Do the writing in this thread. */
Writer();
} 



Agenda

1. Course details.
2. Processes.
3. Virtual memory.
4. Threads.
5. Locks.
6. Producer-consumer relationships.
7. Multi-reader/single writer locks.

104



Basic problem

1. You have object in memory you would like to share between 
threads.

2. It doesn’t change very often but it gets read a lot.

3. Lots of threads can share access that object if they’re all just 
reading it.

4. But if any thread wants to write to it, it must lock out all the 
other threads while it does that.
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Multiple reader / single writer problem

I’m going to ask you to try solving it.
It does show up on whiteboard interviews.

1. We’ll assume some simple mutex and signaling facilities 
mapped to the OS.

2. I’ve give you a chance to invent your own solution.  (Sorry, no 
autograder.)

3. I’ll show you some known solutions but not today (and no, it 
won’t be on the midterm.)
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// Assume some basic Mutex and Signal mechanisms provided
// by the OS that we might wrapper as follows.

class Mutex
{
private:

// ... a handle from the OS

public:
// Simple mutual exclusion.
Take( );
Release( );

Mutex( );
~Mutex( );

};
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class Signal
{
private:

// ... a handle from the OS
public:

// Simple signaling mechanism that can be set (true)
// reset (false).

// Wait for the signal to be set.
// If it's not set, you sleep until it is.
// Waiting for signal to be set does not reset it.
// Other waiting threads will also wake up so long
// as the signal remains set.

void Wait( );

// Set or reset it.
void Set( );
void Reset( );

Signal( bool initialState = false );
~Signal( );

};
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// Here is the multiple reader / single writer interface
// to be built.

class SharedReader
{
public:

virtual void ReadLock( ) = 0;
virtual void ReleaseReadLock( ) = 0;
virtual void WriteLock( ) = 0;
virtual void ReleaseWriteLock( ) = 0;      

};
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